

Surface Mount Bidirectional Transient Voltage Suppressor

HIGH-RELIABILITY PRODUCTS

Features

- Stand-off voltage 40V
- Power dissipation 600W
- SMB/DO-214AA package

Applications

- For surface mounted applications
- Reliable low cost construction utilizing molded plastic technique
- Typical I_R less than 1μA
- Fast response time: less than 5.0ns for 0 Volts to V_{BR}

Environmental

RoHS/WEEE compliant with applied exemption 7(a)

Rev. 1.0

Halogen free

Description

The SS10181 is a 40V, 600W bidirectional TVS in the popular SMB/DO-214AA surface mount package. It is designed to be used with Neo-Iso™ Solid State Relays TS13101, TS13102, TS13103 and TS13401.

Marking & Dimensions Information

Notes

(1): Component will be marked 40CA and YYWW where YYWW is a 4-digit date code.

Dimension	Millimeters			
	Min	Max		
Α	4.06	4.57		
В	3.30	3.94		
С	1.96	2.21		
D	0.15	0.31		
Е	5.21	5.59		
F	0.05	0.20		
G	2.01	2.50		
Н	0.76	1.52		

Rev. 1.0

Ordering Information

Part Number	Packaging
SS10181	Tape and reel ⁽¹⁾

Notes:

(1): Each reel contains 2,500 units.

Absolute Maximum Rating

Parameter	Symbol	Value	Units	
Peak Power Dissipation at $T_J = 25^{\circ}C$, $t_p = 1 \text{ms}^{(1)}$	P _{PP}	600	W	
Steady State Power Dissipation at T_L = 120° $C^{(2)}$ see Figure 4.	PD	1.5	W	
	R _{THJA}	90		
Typical Thermal Resistance ⁽²⁾	R _{THJL}	21	°C/W	
	R _{THJC}	25		
Storage and Operating Junction Temperature	T _{STG} , T _J	-55 to +175	°C	

Notes:

- (1): Non-repetitive current pulse, per Figure 3 and derated above T_J = 25°C per Figure 1
- (2): Thermal Resistance from junction to ambient, lead and case.

Electrical Characteristics (T=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Working Peak Reverse Voltage	V_{RWM}			40		V
Breakdown Voltage	V_{BR}	I _{TEST} = 1.0 mA	44.4		49.1	V
Clamping Voltage	V_{RSM}	I _{RSM}		64.5		V
Reverse Surge Current	I _{RSM}				9.3	Α
Reverse Leakage	I _R	V_{RWM}			0.5	μΑ

Rev. 1.0

Rating and Characteristic Curves

Figure 1: Pulse Derating Curve

Figure 2: Maximum Non-repetitive Surge Current

Figure 3: Pulse Waveform

Figure 4: Typical Junction Capacitance

Figure 5: Pulse Rating Curve

Figure 6: Steady State Power Derating Curve

