1N5807, 1N5809, 1N5811 # **Axial Leaded Hermetically Sealed Superfast Rectifier Diodes** #### **HIGH-RELIABILITY PRODUCTS** #### **Features** - Very low reverse recovery time - Hermetically sealed in lead borosilicate glass sleeve - Low switching losses - Soft, non-snap off, recovery characteristics - Very low forward voltage drop #### **Quick reference data** $V_{R} = 50 - 150V$ $I_{E} = 6.0A$ $t_{rr} = 30 \text{ ns}$ $I_{R} = 5.0 \mu A$ #### **Absolute Maximum Rating** Electrical specifications @ $T_A = 25$ °C unless otherwise specified. | Parameter | Symbol | 1N5807 | 1N5809 | 1N5811 | Units | |--|-----------------------|-------------|--------|--------|-------| | Working reverse voltage | $V_{_{\mathrm{RWM}}}$ | 50 | 100 | 150 | V | | Repetitive reverse voltage | V_{RRM} | 50 | 100 | 150 | V | | Average forward current
(@ 75°C, lead length = 0.375") | I _{F (AV)} | 6.0 | | | А | | Repetitive surge current
(@ 55°C in free air, lead length = 0.375") | I _{FRM} | 25 | | | Α | | Non-repetitive surge current $(t_p = 8.3 \text{ms}, @V_R \& T_{jmax})$ | I _{FSM} | 125 | | | Α | | Storage temperature range | T _{stg} | -65 to +175 | | | ٥С | | Operating temperature range | T _{OP} | -65 to +175 | | | °C | # Electrical Characteristics (T=25°C unless otherwise specified) | Parameter | Symbol | 1N5807 | 1N5809 | 1N5811 | Units | |---|--------------------|--------|--------|--------|------------------| | Average forward current max. (pcb mounted; T _A = 55°C) | | | | | | | for sine wave | I _{F(AV)} | | | Α | | | for square wave $(d = 0.5)$ | I _{F(AV)} | 1.8 | | | Α | | Average forward current max. $(T_L = 55^{\circ}C; L = 3/8")$ | | | | | | | for sine wave | I _{F(AV)} | | 5.7 | | Α | | for square wave $(d = 0.5)$ | I _{F(AV)} | | 6.0 | | Α | | I^2 t for fusing (t = 8.3ms) max. | l²t | | 32 | | A ² s | | Forward voltage drop max.
@ $I_F = 4.0A$, $T_J = 25$ °C | V _F | | 0.875 | | V | | Reverse current max. | | | | | | | @ V _{RWM} , T _i = 25°C | I _R | | 5.0 | | μA | | @ V _{RWM} , T _j = 100°C | I _R | 150 | | | μA | | Reverse recovery time max. | | | | | | | 1.0A I _F to 1.0 I _R . | t _{rr} | | 30 | | ns | | Recovers to 0.1A I_{RR} . | | | | | | | Junction capacitance typ. $@V_R = 5V, f = 1MHz$ | C _j | | pF | | | ## **Thermal Characteristics** • | Parameter | Symbol | 1N5807 | 1N5809 | 1N5811 | Units | |---|-------------------|--------|--------|--------|-------| | Thermal resistance - junction to lead
Lead length = 0.375" | $R_{\theta JL}$ | 22 | | °C/W | | | Thermal resistance - junction to ambient
On 0.06" thick pcb. 1oz. copper | R _{ej A} | 90 | | °C/W | | Figure 1. Forward voltage drop as a function of forward current. Figure 2. Typical junction capacitance as a function of reverse voltage. #### **Outline Drawing** | Dimensions | | | | | | |------------|-------|-------|--------|--------|--| | Inches | | ches | Millir | neters | | | DIM - | MIN | MAX | MIN | MAX | | | Α | 0.115 | 0.142 | 2.92 | 3.61 | | | В | 0.900 | 1.30 | 22.86 | 33.02 | | | С | 0.130 | 0.300 | 3.30 | 7.62 | | | Е | 0.036 | 0.042 | 0.91 | 1.07 | | These products are qualified to MIL-PRF-19500/477 and are preferred parts as listed in Qualified Products Database (QPD). They can be supplied fully released as JANTX, JANTXV and JANS.