

1N5807, 1N5809, 1N5811

Axial Leaded Hermetically Sealed Superfast Rectifier Diodes

HIGH-RELIABILITY PRODUCTS

Features

- Very low reverse recovery time
- Hermetically sealed in lead borosilicate glass sleeve
- Low switching losses
- Soft, non-snap off, recovery characteristics
- Very low forward voltage drop

Quick reference data

 $V_{R} = 50 - 150V$

 $I_{E} = 6.0A$

 $t_{rr} = 30 \text{ ns}$

 $I_{R} = 5.0 \mu A$

Absolute Maximum Rating

Electrical specifications @ $T_A = 25$ °C unless otherwise specified.

Parameter	Symbol	1N5807	1N5809	1N5811	Units
Working reverse voltage	$V_{_{\mathrm{RWM}}}$	50	100	150	V
Repetitive reverse voltage	V_{RRM}	50	100	150	V
Average forward current (@ 75°C, lead length = 0.375")	I _{F (AV)}	6.0			А
Repetitive surge current (@ 55°C in free air, lead length = 0.375")	I _{FRM}	25			Α
Non-repetitive surge current $(t_p = 8.3 \text{ms}, @V_R \& T_{jmax})$	I _{FSM}	125			Α
Storage temperature range	T _{stg}	-65 to +175			٥С
Operating temperature range	T _{OP}	-65 to +175			°C

Electrical Characteristics (T=25°C unless otherwise specified)

Parameter	Symbol	1N5807	1N5809	1N5811	Units
Average forward current max. (pcb mounted; T _A = 55°C)					
for sine wave	I _{F(AV)}			Α	
for square wave $(d = 0.5)$	I _{F(AV)}	1.8			Α
Average forward current max. $(T_L = 55^{\circ}C; L = 3/8")$					
for sine wave	I _{F(AV)}		5.7		Α
for square wave $(d = 0.5)$	I _{F(AV)}		6.0		Α
I^2 t for fusing (t = 8.3ms) max.	l²t		32		A ² s
Forward voltage drop max. @ $I_F = 4.0A$, $T_J = 25$ °C	V _F		0.875		V
Reverse current max.					
@ V _{RWM} , T _i = 25°C	I _R		5.0		μA
@ V _{RWM} , T _j = 100°C	I _R	150			μA
Reverse recovery time max.					
1.0A I _F to 1.0 I _R .	t _{rr}		30		ns
Recovers to 0.1A I_{RR} .					
Junction capacitance typ. $@V_R = 5V, f = 1MHz$	C _j		pF		

Thermal Characteristics •

Parameter	Symbol	1N5807	1N5809	1N5811	Units
Thermal resistance - junction to lead Lead length = 0.375"	$R_{\theta JL}$	22		°C/W	
Thermal resistance - junction to ambient On 0.06" thick pcb. 1oz. copper	R _{ej A}	90		°C/W	

Figure 1. Forward voltage drop as a function of forward current.

Figure 2. Typical junction capacitance as a function of reverse voltage.

Outline Drawing

Dimensions					
Inches		ches	Millir	neters	
DIM -	MIN	MAX	MIN	MAX	
Α	0.115	0.142	2.92	3.61	
В	0.900	1.30	22.86	33.02	
С	0.130	0.300	3.30	7.62	
Е	0.036	0.042	0.91	1.07	

These products are qualified to MIL-PRF-19500/477 and are preferred parts as listed in Qualified Products Database (QPD). They can be supplied fully released as JANTX, JANTXV and JANS.